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Abstract

This paper presents comparisons between full-field numerical results and self-consistent (SC) estimates for the effective behavior

and statistical fluctuations of the stress and strain-rate fields in viscoplastic polycrystals. The full-field simulations make use of a

recently introduced technique, based on the fast Fourier transform (FFT) algorithm. Applications are given for linear and pow-

er-law polycrystals with randomly distributed FCC and HCP grains. For linear systems, the FFT results demonstrate the accuracy

of the standard SC approximation, even for relatively large values of the grain anisotropy parameter when the field fluctuations

become significant. On the other hand, of the various extensions of the self-consistent method that have been proposed for nonlinear

systems, the recent �second-order� method appears to give the best overall predictions for both the effective behavior and the statis-

tical fluctuations of the stress and strain-rate fields in power-law polycrystals.
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1. Introduction

The self-consistent approximation, originally pro-

posed by Hershey [1] and Kröner [2] for linear elastic

materials, is by far the most commonly used method

for estimating the macroscopic behavior of polycrystal-

line aggregates—both linear and nonlinear. For linear

systems, where several different interpretations and der-

ivations have been given (e.g. [3,4]), the various self-con-

sistent approximations all lead to essentially the same
result, at least for untextured polycrystals with �equi-
axed� grains. On the other hand, for nonlinear systems,

the many different extensions of the self-consistent

approximation that have been proposed in the literature
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all give widely diverging predictions. For example, the

�incremental� method of Hill [5] and Hutchinson [6] be-
comes close to the Taylor upper bound estimate for

low rate-sensitivity materials, while the �tangent� proce-
dure of Molinari et al. [7] and Lebensohn and Tomé

[8] leads to estimates that are close to the Reuss lower

bound estimate in this case. For polycrystals with large

grain anisotropy, these estimates can therefore lead to

large differences in the predictions for the macroscopic

behavior of such materials.
Given that many materials, natural and man-made,

are polycrystals, it is of great interest to assess the accu-

racy of the various self-consistent approximations. In

this work, we propose to do precisely this, by making

comparisons of these self-consistent (SC) approxima-

tions with the results of numerical simulations over

ensembles of polycrystals with random microstructures.

To accomplish this, we make use of a technique based
c.
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on the use of fast Fourier transforms (FFT) proposed

originally by Moulinec and Suquet [9,10], developed fur-

ther by Michel et al. [11], and first applied to polycrys-

tals by Lebensohn [12], Lebensohn et al. [13] and

Bhattacharya and Suquet [14]. In some sense, this paper

is a continuation of our earlier work [13], where we were
able to perform similar comparisons for a certain class

of two-dimensional (2-D) model polycrystals. Here, we

first consider the case of random three-dimensional

(3-D) polycrystals with linear behavior, where all the

self-consistent formulations agree, and attempt to verify

the accuracy of the self-consistent approximation in this

case. This check is essential also because all the nonlin-

ear extensions of the self-consistent model make use of
the results of the linear formulation, in some form or

another.

Having verified the accuracy of the approximation

for several representative linear systems, including poly-

crystals with FCC and HCP grains, we proceed to com-

pare the two above-mentioned nonlinear extensions (i.e.

�incremental� and �tangent�), as well as some more re-

cently proposed methods, based on rigorous homogeni-
zation theories, with corresponding FFT simulations,

for ensembles of FCC and ice (HCP) polycrystals with

power-law viscous behavior and isotropic textures.

More specifically, these recent extensions of the self-

consistent approximation are based on the use of varia-

tional �linear comparison� methods, which express the

effective potential of the nonlinear viscoplastic polycrys-

tal in terms of that of a linearly viscous polycrystal with
properties that are determined from suitably designed

variational principles. Two types of estimates are avail-

able depending on the method used. The first is based on

the �variational� method of Ponte Castañeda [15,16], and

the second on the �second-order� method of the same

author [17,18]. These methods have the advantage that

they incorporate information not only on the average

fields in the grains, but in addition, also on the second
moments, or field fluctuations [19]. It should be noted

that there is an earlier version of the second-order

method [20] (called in what follows �second-order
NF�), which neglects the field fluctuations. Finally, the

recently proposed �affine� method of Masson et al. [21],

which will be used in some of the comparisons presented

in this work, can be viewed as a simplified version of the

�second-order NF� method, where the overall behavior is
obtained directly from the stress-strain relation for the

relevant linear comparison composite, which happens

to be identical for both methods.

In addition to comparing the effective (macroscopic)

behavior, we also compare grain averages, as well as

higher-order statistical information in the form of the

stress and strain fluctuations within the polycrystal.

These fluctuations serve to characterize the heterogene-
ity of the fields within the polycrystal, which could be

useful to generate improved estimations of the micro-
structure evolution that is generated by the internal

fields in these materials when they are subjected to exter-

nal loading. They could also be useful in predicting

damage.
2. Polycrystals and effective behavior

By �polycrystals� in this work we mean random, sta-

tistically homogeneous aggregates of perfectly bonded

single-crystal grains with varying orientations. For sim-

plicity, the grain orientations will be assumed to take on

a set of discrete values, defined by rotation tensors Q(r)

(r = 1, . . .,N). Then, the grains with a given orientation
Q(r) occupy �phases� X(r) (r = 1, . . .,N), such that

X ¼ [N
r¼1X

ðrÞ. Their functions v(r), serving to describe

the location of the various orientations, are defined to

be equal to 1 if the position vector x is in X(r) and zero

otherwise. Volume averages over X, and over phase X(r)

are denoted by ÆÆæ and ÆÆæ(r), respectively. The phase

probabilities c(r) = Æv(r)æ serve to characterize the crystal-

lographic texture of the aggregate.
The local constitutive response of the polycrystal is

defined by the relations

e ¼ ou
or

; uðx; rÞ ¼
XN
r¼1

vðrÞðxÞuðrÞðrÞ;

uðrÞðrÞ ¼
XK
k¼1

/ðrÞ
ðkÞ sðrÞðkÞ

� �
; ð1Þ

where r is the Cauchy stress, e is the Eulerian strain-rate,
and u and u(r) are the stress potentials for the polycrystal

and single crystals with orientation Q(r), respectively.

The slip potentials /ðrÞ
ðkÞ ðk ¼ 1; . . . ;KÞ characterize the

response of the K slip systems in the crystals with orien-

tationQ(r) and depend on the resolved shear (or Schmid)

stresses

sðrÞðkÞ ¼ r � lðrÞ
ðkÞ; l

ðrÞ
ðkÞ ¼

1

2
n
ðrÞ
ðkÞ �m

ðrÞ
ðkÞ þm

ðrÞ
ðkÞ � n

ðrÞ
ðkÞ

� �
: ð2Þ

Here, the l
ðrÞ
ðkÞ are second-order tensors with n

ðrÞ
ðkÞ and m

ðrÞ
ðkÞ

denoting the unit vectors normal to the slip plane and

along the slip direction of the kth system, respectively,

for crystals with orientation Q(r). For this class of visco-

plastic polycrystals, it is known [6] that the effective re-

sponse, characterizing the relation between the average
strain-rate �e ¼ hei and the average stress �r, is determined

by

�e ¼ o eU
o�r

; eU ð�rÞ ¼ min
r2Sð�rÞ

uðx;rÞh i ¼ min
r2Sð�rÞ

XN
r¼1

cðrÞ uðrÞ rð Þ
� �ðrÞ

;

ð3Þ

where eU is the effective stress potential for the polycrys-

tal, and Sð�rÞ ¼ fr; such that div r ¼ 0 and hri ¼
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�r in Xg denotes the set of statically admissible stresses

consistent with an average stress �r.
For simplicity, the slip potentials of the grains with

various orientations will be taken to be identical, i.e.

/ðrÞ
ðkÞ ¼ /ðkÞ, and use will be made here of the standard

power-law form for these slip potentials

/ðkÞðsÞ ¼
c0 s0ð ÞðkÞ
nþ 1

s
s0ð ÞðkÞ

�����
�����
nþ1

; ð4Þ

where m = 1/n (0 6 m 6 1) is the strain-rate sensitivity,

(s0)(k) > 0 is the reference flow stress of the kth slip sys-

tem, and c0 is a reference shear-rate. The fact that the vis-
cous exponent n has been assumed to be the same for all

the slip systems and all the grains in the polycrystal leads

to the effective potential of the polycrystal eU being a
homogeneous function of degree n + 1 on the average

stress �r. Additionally, since the polycrystal is incompress-

ible, eU will depend on �r only through its deviator �s (i.e. it
is independent of �rm ¼ 1

3
tr �r). Introducing the von Mises

equivalent stress �re ¼
ffiffiffiffiffiffiffiffiffiffi
3
2
�s � �s

q
, it follows that:

eU �rð Þ ¼ ~r0

nþ 1ð Þ
�re

~r0

� �nþ1

; ð5Þ

where the effective flow stress of the polycrystal, denoted
~r0, depends, in general, on both the loading and the

microstructure of the polycrystal.

For later use, some additional notation is introduced

next. The per-phase (over grains with orientation r) aver-

ages of the stress and strain-rate are defined via
�rðrÞ ¼ hriðrÞ and �eðrÞ ¼ heiðrÞ, and are such that
�r ¼

PN
r¼1c

ðrÞ�rðrÞ and �e ¼
PN

r¼1c
ðrÞ�eðrÞ. The von Mises

equivalent measures associated with �rðrÞ and �eðrÞ are de-

fined by: �rðrÞ
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
�sðrÞ � �sðrÞ

q
; where �sðrÞ is the average

stress deviator in phase r, and �eðrÞe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
�eðrÞ � �eðrÞ

q
, respec-

tively. In addition, the second moments of the stress and

strain-rate over phase r are given by Ær�ræ(r) and Æe � eæ(r),
in terms ofwhich expressionsmay be obtained for the cor-

responding phase fluctuation covariance tensors

CðrÞ
r :¼ r� �rðrÞ	 


� r� �rðrÞ	 
� �ðrÞ
¼ r� rh iðrÞ � �rðrÞ � �rðrÞ; ð6Þ

and similarly for CðrÞ
e . In particular, use will be made

here of the standard deviation (SD) of the von Mises

stress and the equivalent plastic strain-rate over phase

r [13]

SDðrÞðreÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
e � �rðrÞ

e

� �2
� �ðrÞ

s
;

SDðrÞðeeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2e � �eðrÞe

	 
2D EðrÞ
r

: ð7Þ

Completely analogous expressions may be given for the

overall (polycrystal-wide) fluctuation covariance tensors

Cr and Ce, as well as for the overall standard deviations
SD(re) and SD(ee) [13]. For instance, SDðreÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2

e � �r2
ei

p
, but note that SDðreÞ 6¼

PN
r¼1c

ðrÞSDðrÞðreÞ.
3. Self-consistent estimates for effective behavior

3.1. Linear polycrystals

This section is concerned with polycrystals with linear

constitutive behavior. The discussion applies equally

well to linear elastic and linearly viscous systems, pro-

vided that the symbols appearing in the relevant equa-

tions are given appropriate physical interpretations.

For reasons that will become evident further below,
the behavior of the linear heterogeneous materials of

interest in this section will be enlarged slightly to include

�thermoelastic� behavior characterized by constitutive

relations of the type

e ¼ MðrÞrþ eðrÞ; uðrÞðrÞ ¼ 1

2
r �MðrÞrþ eðrÞ � r; ð8Þ

where M(r) and e(r) define the viscous compliance tensor
and �thermal� strain-rate tensor of phase r. Because of

the linearity of the problem, it is known [22] that the

average of the stress over phase r in this linear compar-

ison �thermoelastic� composite may be written in the

form

�rðrÞ ¼ BðrÞ�rþ bðrÞ; ð9Þ

where B(r) and b(r) are concentration tensors depending

on the homogenization procedure utilized. Using these

concentration tensors, the effective potential eU T of this

linear composite may be written in the form [18]

eU Tð�rÞ ¼
1

2
�r � fM�rþ ~e � �rþ 1

2
~g; ð10Þ

where fM ¼
PN

r¼1c
ðrÞMðrÞBðrÞ; ~e ¼

PN
r¼1c

ðrÞBðrÞTeðrÞ; ~g ¼PN
r¼1c

ðrÞbðrÞ � eðrÞ are the effective compliance, effective

�thermal� strain-rate and effective energy under zero ap-

plied stress, respectively. Note that the associated effec-
tive stress–strain-rate relation is given by

�e ¼ fM�rþ ~e: ð11Þ

Self-consistent estimates for thermoelastic systems are

available from the works of Laws [22] and Willis [23].

Explicit expressions of the concentration tensors B(r)

and b(r) tensors for the case �equiaxed� grains can be
found in reference [18]. Given those concentration ten-

sors, corresponding estimates may be generated for the

phase averages �rðrÞ and the effective potential eU T of

the linear comparison polycrystal. In addition, estimates

for the second moments of the stress over phase r may

be obtained by means of the formula [24–26]



5350 R.A. Lebensohn et al. / Acta Materialia 52 (2004) 5347–5361
r� rh iðrÞ ¼ 2

cðrÞ
o eU T

oMðrÞ ; ð12Þ

where the variables e(r) are held fixed in the differentia-

tion. Corresponding expressions for the phase fluctua-

tion covariance tensors and standard deviations then

follow using expressions (6) and (7).

For the special case of polycrystals with isotropic

crystallographic and morphological textures, leading to

overall isotropic properties, it is possible to simplify
the above expressions, depending on the symmetry

of the single crystals. The results for the effective behav-

ior are standard [23] and will not be repeated here.

3.2. Nonlinear polycrystals

In this subsection, the �second-order� homogeniza-

tion method for viscoplastic polycrystals is briefly re-
called [18]. The key idea of the method is to

introduce a �linear thermoelastic comparison polycrys-

tal� with local behavior defined by relations (8), where

the viscous compliance and �thermal� strain-rate ten-

sors are written

MðrÞ ¼
XK
k¼1

aðrÞðkÞl
ðrÞ
ðkÞ � l

ðrÞ
ðkÞ and

eðrÞ ¼
XK
k¼1

eðrÞðkÞl
ðrÞ
ðkÞ; ð13Þ

in terms of corresponding slip-level quantities

aðrÞðkÞ and eðrÞðkÞ, respectively. Approximating the local

potential of the nonlinear polycrystal u in terms of the

local potential of this linear comparison polycrystal,

Liu and Ponte Castañeda [18] generated the following

approximation for the effective potential of the nonlin-

ear polycrystal:

eU ð�rÞ ¼
XN
r¼1

XK
k¼1

cðrÞ /ðrÞ
ðkÞ ŝðrÞðkÞ

� �
þ/ðrÞ

ðkÞ
0
�sðrÞðkÞ

� �
�sðrÞðkÞ � ŝðrÞðkÞ

� �n o
;

ð14Þ

where the variables �sðrÞðkÞ and ŝðrÞðkÞ depend on the averages

and fluctuations of the resolved shear stress sðrÞðkÞ on the

slip system k for grain orientation r in the linear com-

parison polycrystal, defined by relations (8) and (13),

in such a way that

�sðrÞðkÞ :¼ sðrÞðkÞ

D EðrÞ
¼ �rðrÞ � lðrÞ

ðkÞ ð15Þ

and

ŝðrÞðkÞ � �sðrÞðkÞ

� �2

:¼ sðrÞðkÞ � �sðrÞðkÞ

� �2
� �ðrÞ

¼ l
ðrÞ
ðkÞC

ðrÞ
r � lðrÞ

ðkÞ;

ð16Þ
where the quantities ŝðrÞðkÞ � �sðrÞðkÞ are taken to have the

same sign as the �sðrÞðkÞ.
In turn, the variables eðrÞðkÞ and aðrÞðkÞ in relations (13) for

e(r) and M(r), defining the properties of the linear com-

parison polycrystal, are required to satisfy the closure

relations [18]

eðrÞðkÞ ¼ /ðrÞ
ðkÞ

0
�sðrÞðkÞ

� �
� aðrÞðkÞ�s

ðrÞ
ðkÞ ð17Þ

and

/ðrÞ
ðkÞ

0
ŝðrÞðkÞ

� �
� /ðrÞ

ðkÞ
0
�sðrÞðkÞ

� �
¼ aðrÞðkÞ ŝðrÞðkÞ � �sðrÞðkÞ

� �
: ð18Þ
4. Numerical simulations

4.1. The FFT approach

Moulinec and Suquet [9,10] developed an iterative

method based on the FFT algorithm to compute the

effective properties and the local fields of elastic and

elastoplastic periodic composites. Lebensohn [12] used

Moulinec-Suquet�s FFT formulation to predict overall

and local textures in viscoplastic polycrystals. However,

as pointed out by Michel et al. [27] and Lebensohn [12],

the original FFT iterative method is not well suited for
materials with low rate-sensitivity and strongly aniso-

tropic properties. To overcome this limitation, Michel

et al. [11] proposed an improved FFT formulation for

isotropic composites with high contrast of properties be-

tween phases, based on an augmented Lagrangian meth-

od. In an earlier work [13], we adapted this improved

FFT formulation to deal with model 2-D polycrystals.

In what follows, we give a brief explanation of the above
augmented Lagrangian method. For a more detailed

description of this formulation, the reader is referred

to the works of Michel et al. [11,28] for composites,

and to Lebensohn et al. [13] for polycrystals.

The FFT method is based on the solution of a unit cell

problem with periodic boundary conditions. The unit cell

under consideration should be discretized into

N1 · N2 · N3 Fourier points. This discretization deter-
mines a regular grid in the Cartesian space {xd} and a

corresponding grid in the Fourier space {nd}. Themethod

also requires the selection of a linear reference medium of

stiffness L0. Then, the Fourier transform of the Green

operator Ĉ
0ðnÞ associated with this reference medium

can be readily obtained for each point of Fourier grid

[10,12]. Next, the FFT-based algorithm consists in find-

ing a strain-rate field, associated with a kinematically
admissible velocity field, that minimizes the average of

the local strain energies, under the constraint imposed

by the strain compatibility condition. If a macroscopic

strain-rate �e is imposed on the unit cell, the algorithm

can be initialized under a uniform strain-rate assumption
�e0ðxÞ ¼ 0 8x 2 fxdg; where �e0ðxÞ is the initial guess for

the local strain-rate deviation field, i.e. �eðxÞ ¼ eðxÞ � �e,
and the corresponding initial guess of the stress field
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r0(x) can be obtained from the local constitutive relation.

Furthermore, it can be assumed that k0(x) = r0(x), where

k0(x) is the initial guess for a field of Lagrange multipliers

associated with the compatibility constraint. These initial

field values can be used to start the iterative procedure

that follows. If �eiðxÞ and ki(x) are known "x 2 {xd},
the (i + 1)th iteration starts with the calculation of the

polarization field: diþ1ðxÞ ¼ kiðxÞ � L0�eiðxÞ. Next,

d̂
iþ1ðnÞ ¼ fftfdiþ1ðxÞg can be computed. The new guess

for the kinematically admissible strain-rate deviation

field can be then obtained as: �̂�
iþ1

ðnÞ ¼ �Ĉ
0ðnÞd̂iðnÞ;

8n 6¼ 0; and �̂�
iþ1

ð0Þ ¼ 0. The corresponding field in real

space ��iþ1ðxÞ is thus obtained by application of the in-

verse FFT, and the new guess for the deviatoric stress

field is calculated from [11]

riþ1 xð Þ þ L0eiþ1 xð Þ ¼ ki xð Þ þ L0 �eþ ��iþ1 xð Þ
	 


; ð19Þ

where ei+1(x) and ri+1(x) are related through the local
constitutive equation. The latter is a system of nonlinear

equations whose solution gives ri+1 (x) "x 2 {xd}. To

complete the iteration, the new guess of the Lagrange

multiplier field is obtained from [11]

kiþ1ðxÞ ¼ kiðxÞ þ L0ð�iþ1ðxÞ � eiþ1ðxÞÞ: ð20Þ
The convergence criterion after the jth iteration is thus

given by

err rð Þ ¼
rj xð Þ � kj xð Þ



 


2

D E
�re

< d;

err eð Þ ¼
ej xð Þ � �j xð Þk k2

� �
�ee

< d; ð21Þ

where i Æ i2 denotes the quadratic norm, �ee and �re are the

macroscopic equivalent strain-rate and stress, and d is a
small positive threshold quantity. Expressions (19)–(21)

guarantee the convergence of: (a) e(x) (i.e. the strain-rate

field related with the stress through the constitutive

equation) towards �(x) (i.e. the kinematically admissible

strain-rate field) to fulfill compatibility, and (b) the La-

grange multiplier field k(x) towards the stress field r(x)

to fulfill equilibrium.

4.2. Ensemble averages over FFT solutions

Just as in our previous work on 2-D polycrystals [13],

the above FFT formulation has been used to obtain

effective properties of isotropic polycrystals with ran-

dom microstructure by means of ensemble averages,

i.e. averages over the outcomes of �numerical experi-

ments� performed on many specimens which are gener-
ated alike, i.e. by random assignment of orientations

to a given array of grains that constitutes a representa-

tive volume element, but differ at micro level, due to

the inherent stochastic character of such generation pro-

cedure. Therefore, let us consider a periodic 3-D poly-
crystal, generated by periodic repetition of a cubic unit

cell consisting of 8 · 8 · 8 = 512 cubic grains of ran-

domly chosen orientations. If this unit cell is in turn dis-

cretized using a 64 · 64 · 64 Fourier grid, this results in

8 · 8 · 8 = 512 Fourier points per grain. Such unit cell is

representative of a periodic polycrystal generated by
repetition of the unit cell in each direction of the space.

The response of this periodic polycrystal is equivalent to

that of one specimen in an ensemble. Therefore, the

averages over a sufficiently large number of periodic unit

cell configurations should give the effective properties of

a polycrystal with random microstructure. It should be

noted that the microstructures of these polycrystals,

generated for ensemble averaging, are random only in
a restricted sense, since the grain orientations were cho-

sen randomly but the morphology was set a priori to be

equiaxed [29]. The generation of fully random micro-

structures would require grains with both random orien-

tation and morphology (see [30] for details). However,

for our purposes, the above restricted random procedure

allows us to reduce the number of configurations needed

to obtain an isotropic ensemble response.
With this in mind, and in order to compare macro-

scopic and per-phase quantities obtained fromFFT simu-

lations with analogous quantities obtained from SC

formulations for aggregates with randommicrostructure,

50 different periodic unit cells have been constructed as

follows. First, the grains of the 3-D array described above

were numbered from 1 to 512.Next, 50 random sequences

of 512 Euler triplets were generated. Each of these se-
quenceswas scanned to find the orientations being atmin-

imum distance (in orientation space) from certain 45

special Euler triplets. The latter special orientations essen-

tially cover the orientation space and were pre-selected

for ensemble averaging of the per-phase statistical quan-

tities. The orientations at minimum distances from the

above special triplets were replaced by the corresponding

pre-selected orientations. In this way, those 45 Euler tri-
plets were present in every unit cell, surrounded by differ-

ent environments, which in turn were randomly chosen.

Finally, to construct the ath configuration, the first triplet
of the ath random sequence was assigned to grain #1, the

second angle to grain #2, and so on.

Using the superscript [a] to denote a single configura-

tion, i.e. �e½a� ¼ he½a�i and �r½a� ¼ hr½a�i, the ensemble aver-

ages of macroscopic magnitudes are given by

�e ¼ 1

N a

XNa

a¼1

�e½a�; �r ¼ 1

N a

XNa

a¼1

�r½a�; ð22Þ

where Na is the number of unit cell configurations. The

ensemble averages of per-phase and overall first and sec-

ond moments are made consistent with prior definitions.

To close this section, let us briefly mention some rel-

evant numerical features of the present approach,

namely: (1) the convergence of the FFT method for a
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single RVE configuration and (2) the stabilization of the

ensemble averaging procedure. In what concerns the

first aspect, for a single RVE configuration, the error

indicators given by expressions (21) decrease monotoni-

cally, for every case considered below. However, reach-

ing errors smaller than a given threshold would require
to increase the number of iterations as the contrast of

properties (i.e. the anisotropy) at single crystal level

and/or the nonlinearity of the material increase. There-

fore, as in [13], rather than adopting a unique threshold

error, we have chosen to fix an appropriate number of

iterations for each set of material properties considered,

so that the resulting errors remain low. The number of

iterations adopted and the average errors obtained are
given in next section, for each material and contrast con-

sidered. Finally, concerning the number of configura-

tions adopted here to obtain representative ensemble

averages, in [13] we found that, in general, 50 configura-

tions are enough to average out roughly the influence of

the different grain environments, resulting in ensemble

averages of the per-phase moments that are mainly dic-

tated by the grain orientation.
5. Results and discussion

In this section, the self-consistent approximation dis-

cussed in Section 3 will be used to generate estimates for

the effective behavior and field fluctuations in untex-

tured (isotropic) polycrystals with FCC and HCP sin-
gle-crystal grains, undergoing uniaxial tension. Note

that throughout this work we will only report results

for uniaxial loading cases, leaving the study of the influ-

ence of the third stress invariant for future work. These

SC estimates will be compared with the results of full-

field numerical simulations using the FFT technique,

as discussed in Section 4. Results will be presented first

for linearly viscous polycrystals with FCC and HCP
grains. In spite of the fact that the value of the exponent

n = 1 is unrealistic for most materials, the comparisons

to be made are useful because they serve to assess the

accuracy of the standard self-consistent approximation

[1,2]. Once this is accomplished, results will be presented

for two nonlinear examples, the objective being to com-

pare the predictions of the various nonlinear extensions

of the self-consistent approximation, including the �in-
cremental�, �tangent�, �affine�, �variational�, �second-order
NF� and �second-order� approximations, with the corre-

sponding FFT simulations.
Table 1

Self-consistent and FFT estimates for the effective flow stress and

overall field fluctuations of linear, isotropic FCC polycrystals

~r0=s0 SDðreÞ=�re SDð�eÞ=��e
SC 1.5 0.408 0.333

FFT 1.499 0.423 0.324
5.1. Linear FCC polycrystals

As is well known, the deformation in FCC single

crystals takes place through slip on a set of four slip
planes of the type {111}, along three slip directions
(per plane) of type Æ110æ. The existence of these 12 slip

systems ensures that there are five linearly independent

systems, allowing arbitrary (incompressible) plastic

deformation for the grains. The crystals are assumed

to have linearly viscous behavior characterized by rela-

tions (4) with n = 1, and with identical slip flow stresses
so that (s0)(k) = s0 for all k = 1, . . ., 12. The polycrystal is
assumed to be untextured, with isotropic two-point sta-

tistics, corresponding to �equiaxed� grains. The behavior
of such a polycrystal is linear and can then be character-

ized in terms of the effective flow stress ~r0 introduced in

expression (5). In addition, results are presented for the

overall standard deviations of the equivalent stress and

strain-rate, as well as the corresponding per-phase
averages, and per-phase standard deviations defined by

Eq. (7).

The overall properties obtained for both the SC

approximation and the FFT simulations are summa-

rized in Table 1. Note that the FFT results correspond

to averages over 50 configurations and that each individ-

ual simulation consisted in 30 iterations, resulting in

ensemble average relative errors (defined as the mean
values of the relative errors given by expressions (21)

over the 50 configurations) of 0.119 · 10�4 and

0.162 · 10�4, for the stress and strain-rate fields, respec-

tively. It is worth mentioning that the dispersion of the

above relative errors was low, with range/mean values

(i.e. [max(Æ) � min(Æ)]/ÆÆæ) of 14.3% and 8.6%, respec-

tively. For this low-anisotropy system, it can be seen

that the agreement between the FFT and SC estimates
is excellent for the effective flow stress, and quite good

for the overall standard deviations of the stress and

strain-rates. In this respect, it is worth noting that the

standard deviations obtained with FFT would be ex-

pected to be more susceptible to numerical error, being

higher-order statistical quantities.

The orientation-dependence of the phase-averages

and fluctuations of the stress and strain-rate fields over
grains with given, fixed orientations is considered next.

Given the symmetries already alluded to, it is sufficient

to restrict attention to the standard spherical triangle,

with vertices {100}, {100} and {111}. (Note that

equal-area projections are used). Then, the various

points in the spherical triangle correspond to grains

which are so oriented relative to the loading axis. Thus,

for example, the point {100} corresponds to grains that
are oriented such that the loading axis is aligned with the

{100} direction in these grains.



R.A. Lebensohn et al. / Acta Materialia 52 (2004) 5347–5361 5353
In Fig. 1, plots are given for the per-phase averages of

the von Mises stress, �rðrÞ
e , and the equivalent plastic

strain-rate, �eðrÞe . The SC estimates are shown on the left

and the FFT on the right. It can be observed from these

figures that the average stress is largest for orientations

in the vicinity of the {111} direction, and lowest near
the {100} direction, with roughly the opposite behavior

for the strain-rate. Although the FFT and SC estimates

are in very good qualitative agreement, there are some

minor differences in the results, such as some extra fea-

tures in the FFT level curves, which are not present in

the SC, and which are probably due to numerical inac-

curacies. There are also some differences in the maxi-

mum and minimum values (refer to Table 2 for details).
Fig. 1. Plots of the SC (left) and FFT (right) estimates for the per-phase ave

function of orientation in the spherical triangle, for linear, isotropic FCC poly

the applied stress �re, and (c) and (d) for the strain-rates �eðrÞe , normalized by

Table 2

Self-consistent and FFT results for the per-phase average and fluctuations o

SC

Minimum Average Maximu

�rðrÞe =�re 0.642 1.034 1.245

�eðrÞe =�ee 0.839 1.015 1.244

SDðrðrÞe Þ=�re 0.270 0.270 0.270

SDðeðrÞe Þ=�ee 0.264 0.264 0.264
Concerning the per-phase standard deviations of the

equivalent stress and strain fields, it is recalled [31] that

the SC method yields a uniform value for these quanti-

ties. On the other hand, the corresponding FFT predic-

tions exhibit some scatter about the SC prediction. The

maximum, average and minimum FFT and unique SC
values are also given in Table 2. It can be seen that

the average values match fairly well, and that the scatter

of the values in the FFT simulations is relatively small

(less than 5%), which shows that the uniformity of the

fluctuations may be a good approximation in this case.

Certainly part of the scatter is due to numerical error

in computing these higher-order quantities, but it is also

probable that the per-phase standard deviations in
rages of the von Mises stress and the plastic equivalent strain-rate, as

crystals. Parts (a) and (b) are for the stress averages �rðrÞ
e , normalized by

�ee.

f the stress and strain-rate fields for linear, isotropic FCC polycrystals

FFT

m Minimum Average Maximum

0.627 1.038 1.282

0.857 1.014 1.207

0.253 0.266 0.278

0.249 0.261 0.272
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actual polycrystals would not be exactly uniform in

general.

5.2. Linear HCP polycrystals

In this section, we consider hexagonal-close-packed
(HCP) polycrystalline materials with c/a ratios of 1.593

and 1.629, which are thought to be reasonable values

for Zr and ice. The value of n is again chosen to be equal

to 1, corresponding to linearly viscous behavior.

Although this value is unrealistic for Zr and ice, it will

be used here to explore the validity of the self-consistent

approximation for these materials, as determined by

comparisons with FFT simulations for the same materi-
als. In particular, the effect of grain heterogeneity, which

can be significant for these materials, will be investi-

gated. In the next section, a more realistic value

(n = 3) will be considered for ice polycrystals. The rele-

vant slip systems are basal slip ðf0001gh11�20iÞ, pris-
matic slip ðf10�10gh11�20iÞ, and first-order

ðf10�1�1gh11�23iÞ and second-order ðf11�22gh11�23iÞ
pyramidal-Æc + aæ slip, which will be denoted by the la-
bels A, B, and C, respectively. Note that the three basal

plus the three prismatic systems supply only four (two

each) linearly independent systems, allowing no strain-

ing along the Æcæ-axis. However, the 12 first-order

pyramidal-Æc + aæ systems, and the six second-order

pyramidal-Æc + aæ systems each contain sets of five inde-

pendent systems.

The polycrystals are again assumed to be untextured,
with isotropic two-point statistics. Using the flow shear

stress on the basal systems sA as a reference, we consider

two cases: (a) for the Zr-type material, the reference

stress of the prismatic systems is taken to be equal to

that of the basal systems (sB = sA), and that of the

�first-order� pyramidal systems is considered to be varia-

ble (sC = MsA, where the �contrast parameter� or �grain
anisotropy factor� M is variable); (b) for the ice-type
material, the reference stress of the prismatic systems

is taken to be equal to that of the �second-order� pyram-

idal systems (sB = sC), and variable (sC = MsA, with M

variable). Note that for the first class of materials, there

are four independent slip systems left in the limit as M

tends to infinity (no pyramidal slip), while for the second

class, only two systems are left in the limit as M tends to
Table 3

Number of iterations adopted in each individual FFT simulation, and ens

untextured linearly viscous Zr-type and ice-type polycrystals, for different va

M Zr-type

Iterations Æerr(r)æ Æerr(e)æ

1 20 0.493 · 10�4 0.724 · 10�4

10 30 0.715 · 10�4 0.975 · 10�4

100 60 0.215 · 10�3 0.984 · 10�4

1000 100 0.666 · 10�3 0.402 · 10�4
infinity (no prismatic and no pyramidal). Therefore, the

second class of materials is kinematically more con-

strained than the first, even if both—unlike the FCC

materials considered earlier—violate the von Mises rule

(which states that five independent systems are required

to accommodate a general plastic deformation in single
crystals) in the limit asM ! 1. For the above two types

of linear HCP polycrystals, Table 3 shows the number of

iterations adopted in each individual FFT simulation, as

well as the resulting ensemble average stress and strain-

rate relative errors, for a sample of different values of the

contrast parameter M. It is worth mentioning that the

dispersion of the relative errors over the 50 configura-

tions remain low, even for large contrasts, e.g. for
M = 1000 we obtained, in the Zr-like case, range/mean

dispersions of 18.1% and 9.7% for the stress and

strain-rate relative errors, respectively, and of 18.9%

and 22.1% for the ice-like polycrystal case.

In Fig. 2(a), the SC estimates and the FFT results for

the effective flow stress ~r0 of the Zr-type polycrystal are

plotted as functions of the grain anisotropy M. It can be

seen that the SC and numerical results are in very good
quantitative agreement, even for very large values of M.

However, perhaps more importantly, the FFT simula-

tions seem to corroborate the SC prediction that the

polycrystal will exhibit a finite flow stress in the limit

as M tends to infinity. This is significant because it

shows that the von Mises rule need not hold for an iso-

tropic polycrystal: even though the single crystals cannot

accommodate arbitrary deformations, isotropic poly-
crystals of these HCP materials will be able to accom-

modate general deformations (as first suggested by

Hutchinson [32]). In Fig. 2(b), plots are shown for the

SC and FFT estimates for the standard deviations of

the von Mises stress and equivalent plastic strain-rate,

SD(re) and SD(ee), as functions of the grain anisotropy

M. These results are normalized by the average von

Mises stress �re and equivalent plastic strain-rate �ee,
respectively. It can be seen that the agreement between

the SC and FFT predictions is very good for the

strain-rate fluctuations, and quite good for the stress

fluctuations, except for very large values of M, when

they begin to deviate. The observed differences for large

values of M could be due in part to numerical errors in

the FFT simulations, which would require very fine
emble averages of the stress and strain-rate field relative errors, for

lues of the contrast parameter M

Ice-type

Iterations Æerr(r)æ Æerr(e)æ

20 0.308 · 10�4 0.457 · 10�4

40 0.619 · 10�5 0.722 · 10�5

80 0.480 · 10�4 0.40 · 10�4

120 0.127 · 10�3 0.995 · 10�4
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Fig. 2. Plots of the effective flow stress and field fluctuations for untextured, linearly viscous (n = 1) Zr-type polycrystals with �equiaxed� grains and
sB = sA, as functions of the grain anisotropy sC/sA: (a) the effective flow stress ~r0, normalized by the slip stress sA; (b) overall standard deviations of

the von Mises stress SD(re), and the equivalent plastic strain-rate SD(ee), normalized by the applied stress �re, and the applied strain-rate �ee,
respectively.
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meshes to resolve accurately the very large fluctuations

that would be expected in the fields as a consequence

of the strong heterogeneity in the polycrystal for the lar-

ger values of M. However, it is also possible that the lin-

ear SC scheme simply is not able to reproduce correctly

higher-order moments of the fields for large grain
anisotropy. In spite of the quantitative differences be-

tween the SC and FFT estimates, the results seem to

suggest that the (suitably normalized) fluctuations tend

to saturate for large enough values of M. It is also

noted, in passing, that the fluctuations go to zero for a

value of M approximately equal to 3, which happens

to correspond to isotropic behavior for the constituent

single crystals.
In Fig. 3(a), the corresponding SC and FFT estimates

for the effective flow stress ~r0 of untextured, ice-type

polycrystals are plotted as functions of the grain anisot-

ropy M. Note again that the two types of results are in
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Fig. 3. Plots of the effective flow stress and field fluctuations for untextured,

sB = sC, as functions of the grain anisotropy sC/sA: (a) the effective flow stres

the von Mises stress SD(re), and the equivalent plastic strain-rate SD(ee),
respectively.
excellent quantitative agreement, even for very large val-

ues of M. In this case, however, the effective flow stress

is seen to grow linearly with M, which is very different

from the previous case, where the effective flow stress

was seen to tend to saturate for large enough values of

M. Therefore, this example shows that two independent
slip systems for the constituent single-crystals are not

sufficient to ensure that the isotropic polycrystal will

be able to accommodate arbitrary deformations. In

Fig. 3(b), plots are shown for the SC and FFT estimates

for the overall standard deviations of the stress and

strain-rate, SD(re) and SD(ee), as functions of the grain
anisotropy M. These results are normalized by
�re and �ee, respectively. It can again be seen that the
agreement between the SC and FFT predictions is very

good, even though this time it is better for the stress than

for the strain-rate fluctuations, which start to deviate for

very large values of M. Nevertheless, quantitative
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differences aside, the results seem to suggest that, as was

the case for polycrystals with four independent slip sys-

tems, the (suitably normalized) fluctuations for the pre-

sent case involving two independent slip systems case

also tend to saturate for large enough values of M.

The orientation-dependence of the phase-averages
and fluctuations of the stress and strain-rate fields for

grains with given, fixed orientations is investigated next.

Given the symmetries already alluded to, it is sufficient

to restrict attention to a spherical triangle, this time with

vertices {0001}, f�12�10g and f1�100g. Then, a given

orientation in this triangle corresponds to grains that

are oriented such that the loading axis is aligned with

such a direction in the grains. Figs. 4 and 5 show the
per-phase averages of the von Mises stress �rðrÞ

e , and the

equivalent plastic strain-rate �eðrÞe , respectively, for vari-

ous values of the grain anisotropy parameter M = sC/
sA (1, 10, 100), for the case of Zr-type linear polycrys-

tals. It can be seen from these figures that the average

strain-rate is largest for a band intermediate between

the {0001} and f�1100g directions, except for the case

M = 1 when the largest values is for the {0001} direc-
tion. Note that the average strain-rate along this direc-

tion actually becomes a pronounced minimum as the

value of M is increased, which is not surprising in view

of the fact that the grains become rigid along the c-axis,

as M is increased. It is also noted that the corresponding

behavior for the stress averages is roughly the opposite

of that of the strain-rates for all values of M. On the

other hand, while the overall agreement between the
Fig. 4. Plots of the SC and FFT estimates for the per-phase averages of t

respectively, as function of orientation in the spherical triangle, for isotro

normalized by the applied stress �re. Parts (a) and (b), (c) and (d), and (e) an
SC and FFT predictions is quite good, there are some

quantitative differences in these predictions, especially

for the higher value of M. For more details on the differ-

ences between these two types of estimates, refer to Ta-

ble 4. However, the somewhat irregular patterns in the

FFT results suggest again that these estimates may be-
come inaccurate for the fluctuations at the larger values

of M.

As already discussed in the context of the FCC poly-

crystals, the SC method also yields a uniform value for

the per-phase standard deviations of the equivalent

stress and strain fields in the HCP polycrystals. The cor-

responding FFT predictions exhibit some scatter about

the SC prediction. The maximum, average and mini-
mum values of the FFT estimates are compared with

the SC values in Table 4 for a value of M = 10. It can

be seen that the average values match reasonably well

(less than 10% differences), except for the stress fluctua-

tions for M = 100 (not shown), when the differences are

much larger.

5.3. Nonlinear FCC polycrystals

In this section, the same class of isotropic FCC poly-

crystals of Section 5.1 is considered, but now with a

more realistic nonlinear exponent (n = 10). Estimates

of the SC type were computed for the effective flow

stress ~r0, as well as for the overall standard deviations

of the equivalent stress and strain-rate fields, using the

�incremental� [5,6] �tangent� [7,8], �affine� [21], �variational�
he von Mises stress �rðrÞ
e are shown on the left- and right-hand sides,

pic Zr-type polycrystals with sA = sB and sC/sA =M. The results are

d (f) correspond to the following values of M: 1, 10, 100.



Fig. 5. Plots of the SC and FFT estimates for the per-phase averages of the equivalent plastic strain-rate �eðrÞe are shown on the left- and right-hand

sides, respectively, as function of orientation in the spherical triangle, for isotropic Zr-type polycrystals with sA = sB and sC/sA =M. The results are

normalized by the applied strain-rate �ee. Parts (a) and (b), (c) and (d), and (e) and (f) correspond to the following values of M: 1, 10, 100.

Table 4

Self-consistent and FFT results for the per-phase average and fluctuations of the stress and strain-rate fields for linear, isotropic Zr-type polycrystals

with M = 10

SC FFT

Minimum Average Maximum Minimum Average Maximum

�rðrÞe =�re 0.872 1.021 1.474 0.855 1.027 1.547

�eðrÞe =�ee 0.696 1.011 1.086 0.728 1.007 1.079

SDðrðrÞe Þ=�re 0.216 0.217 0.218 0.199 0.216 0.245

SDðeðrÞe Þ=�ee 0.213 0.213 0.213 0.196 0.209 0.232

Table 5

Taylor, Reuss, different self-consistent, and FFT estimates of the

effective flow stress and the overall field SDs for a nonlinear, isotropic

FCC polycrystal (n = 10)

Model ~r0=s0 SDðreÞ=�re SDð�eÞ=��e
Taylor 2.905 0.568 0

Reuss 2.201 0 0.825

Incremental 2.880 0.752 0.185

Affine 2.741 0.576 0.752

Tangent 2.617 0.349 0.947

Variational 2.811 0.696 0.188

Second-order NF 2.582 0.576 0.752

Second-order 2.540 0.413 0.878

FFT 2.614 0.480 0.586
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[15,16], �second-order NF� (without fluctuations) [20]

and �second-order� (with fluctuations) [17,18] methods.

In addition, the Taylor upper and Reuss lower bounds

are also provided for reference purposes. These bounds

and SC estimates are compared in Table 5 with the cor-

responding results from the FFT simulations. The FFT

results shown correspond to averages over 50 configura-

tions, where each individual simulation consisted in 100
iterations. This resulted in ensemble-average relative er-

rors for the stress and strain-rate fields of 0.123 · 10�3

and 0.504 · 10�4 and range/mean dispersions of 47.3%

and 41.1%, respectively.

The main observation from Table 5 is that the both

�second-order� models appear to give the best overall

agreement with the corresponding FFT results. Thus,

the �second-order� estimate for ~r0 is lower than the
FFT result (2.540 vs. 2.614), while the estimates for

the overall fluctuations of the stress and strain-rate

are lower and higher, respectively (0.413 vs. 0.480,
and 0.878 vs. 0.586). On the other hand, the �second-
order NF� estimate actually appears to give a slightly

better prediction for ~r0, as well as for the strain-rate



Table 6

Number of iterations adopted in each individual FFT simulation, and

ensemble averages of the stress and strain-rate field relative errors, for

ice polycrystals (n = 3), for different values of the contrast parameter

M

M Iterations Æerr(r)æ Æerr(e)æ

1 30 0.277 · 10�4 0.131 · 10�4

10 100 0.492 · 10�4 0.266 · 10�4

50 250 0.255 · 10�4 0.118 · 10�4

80 400 0.102 · 10�3 0.392 · 10�4
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fluctuations, but somewhat worse for the stress fluctu-

ations. Also note that while the affine SC estimate

gives the same predictions for the stress and strain-rate

fluctuations as the �second-order NF� estimate, the

agreement with the FFT for the effective flow stress

is worse. It is further noted that the �tangent� SC esti-
mate for the effective flow stress is in excellent agree-

ment with the FFT result, but the corresponding

estimates for the fluctuations are not as good. Finally,

it is noted, for completeness, that the �second-order
NF� model gives a prediction for the effective flow

stress that is close to the corresponding tangent esti-

mate at this value of n. However, very significant dif-

ferences were observed [33] for larger values of n,
with the tangent estimate tending to the Reuss lower

bound as n ! 1.

5.4. Ice polycrystals

This section is concerned with ice polycrystals at

�10 �C. At this temperature, the active slip systems

are the same as those identified in the previous section
for the �ice-type� polycrystals, but with a more realistic

value [34] of the creep exponent (n = 3). This problem

was considered by Hutchinson [32] using the �incremen-

tal� version of the self-consistent approximation, and by

Castelnau et al. [35,36] using the corresponding �tangent�
version.

In Fig. 6, several nonlinear extensions of the self-

consistent approximation for the effective flow stress
~r0 of untextured, power-law (n = 3) ice polycrystals with

sB = sC are plotted as functions of the grain anisotropy

M = sC/sA. The predictions of the various nonlinear

SC methods are compared with the corresponding

FFT estimates, as well as the Taylor upper bound and

Reuss lower bound. Details on the convergence of the

FFT calculations (number of iterations, average errors)

are given in Table 6 for different values of the contrast
M. Fig. 6(a) gives the results in linear scales, while in
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Fig. 6. Plots of various self-consistent estimates and FFT simulations for the

power-law (n = 3) ice polycrystals with �equiaxed� grains and sB = sC, as fun
Fig. 6(b) same results are plotted in logarithmic scales.

It can be seen from these figures that in fact the two �sec-
ond-order� SC estimates give the best overall agreement

with the FFT predictions, with the more recent version

incorporating fluctuations yielding the most accurate re-
sults. The �variational� estimate gives somewhat larger

predictions, which is consistent with its upper bound sta-

tus [37]. On the other hand, the �affine� estimates almost

coincide with the �variational� results (note that this is

not a general result), while the �incremental� and Taylor

models are much stiffer, leading to significant errors rel-

ative to the FFT estimates for the larger values of M.

Finally, the �tangent� model, while very accurate for
the lower value of M (up to about 10), severely underes-

timates the overall behavior for the larger values of M,

giving less than half of the FFT value for M = 80. Note

that this estimate exhibits a behavior similar to the Re-

uss bound, in that it predicts a saturation of the effective

behavior for large enough values of M, in contrast with

the other estimates which give linear growth with M.

In Fig. 7(a), plots are shown for the overall standard
deviations of the stress field, SD(re), normalized by �re,

as functions of the grain anisotropy M = sC/sA. Here,

once again, the different SC estimates are compared with

the FFT results, as well as with the Taylor and Reuss esti-

mates. It can be seen that the �variational� and �second-
order� estimates, as well as the �second-order NF� and
�affine� models (which coincide) give the best overall
effective flow stress ~r0, normalized by the slip stress sA, for untextured,
ctions of the grain anisotropy sC/sA: (a) linear scales; (b) log scales.



(a) (b)

Fig. 7. Plots of various self-consistent estimates and FFT simulations for the field fluctuations for untextured, power-law (n = 3) ice polycrystals with

�equiaxed� grains and sB = sC, as functions of the grain anisotropy sC/sA: (a) overall standard deviations of the vonMises stress SD(re), normalized by

�re; (b) overall standard deviations of the equivalent plastic strain-rate SD(ee), normalized by �ee.
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agreement with the FFT predictions. Not only is the

qualitative behavior similar, predicting saturation of

the fluctuations for large values of M, but they also do

a good job in terms of quantitative agreement. The �tan-
gent�, Taylor and Reuss estimates, on the other hand,

underestimate the behavior of the stress fluctuations,

with the Reuss estimate of course giving zero fluctua-
tions. It is also worth noting that �incremental� model

(not shown for the sake of clarity) almost coincide with

the �affine� and �second-order NF� predictions in this case.

Fig. 7(b) gives the corresponding results for the

strain-rate fluctuations, SD(ee), normalized by �ee. While

the �tangent� and the �incremental� formulations severely

overestimate and underestimate, respectively, the full-

field predictions, the �affine� and �second-order NF� mod-
els show the best agreement with the FFT results. On the

other hand, the �second-order� predictions capture the

large-M qualitative trend, but they are systematically

larger than the FFT results. This better performance

of the �affine/second-order NF� over the �second-order�
seems to contradict the former result on the effective

flow stress, for which the opposite was found. We sus-

pect that this apparent contradiction may be due to
the fact that the resolution of the FFT grid may not

be fine enough to be able to generate accurate results

for the strain field fluctuations, since the strain fields

are expected to be highly oscillating within each grain.
Table 7

Second-order self-consistent estimates and FFT results for the per-phase aver

polycrystals with n = 3 and M = 10

SC

Minimum Average Maximu

�rðrÞe =�re 0.883 1.153 1.423

�eðrÞe =�ee 0.553 1.138 1.598

SDðrðrÞe Þ=�re 0.635 0.723 0.803

SDðeðrÞe Þ=�ee 1.046 1.074 1.093
Concerning the rest of the fluctuation results, the �varia-
tional� model also underestimates the magnitude of the

fluctuations. The Reuss estimate is seen to do rather well

in predicting the rough magnitudes involved, but gives a

rather sharp transition to a saturating value, which is

not observed in the FFT simulation results. Moreover,

it is recalled here that the Reuss predictions consist only
of (most probably overestimated) intergranular strain-

rate fluctuations associated with the uniform stress

assumption, while in reality the field fluctuations are a

combination of intergranular and intragranular effects.

Finally, the Taylor estimate for the strain-rate fluctua-

tions vanishes identically, in agreement with the uniform

strain-rate hypothesis involved in these estimates.

For these nonlinear polycrystals, the SC estimates no
longer give uniform predictions for the per-phase stand-

ard deviations of the equivalent stress and strain. When

compared with the FFT predictions, the general patterns

are roughly similar, apart from some �noisy� features in
the FFT, which can be attributed to numerical errors.

However, as already pointed out in the context of

Fig. 7 there are significant differences in the magnitudes

of the average strain-rates predicted by the �second-
order� SC estimates and FFT simulations. A general

comparison between the maximum, average and mini-

mum values of the FFT estimates is summarized in

Table 7 for a value of M = 10.
age and fluctuations of the stress and strain-rate fields for isotropic ice

FFT

m Minimum Average Maximum

0.886 1.197 1.515

0.659 1.065 1.364

0.605 0.734 0.823

0.769 0.817 0.853
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6. Concluding remarks

In this work, the self-consistent method has been used

to generate estimates for the effective behavior, as well

as for the fluctuations of the stress and strain-rate fields

in linear and power-law viscous polycrystals with iso-
tropic microstructures. These theoretical estimates were

compared with the results of FFT simulations per-

formed on ensembles of random polycrystals, with the

objective of assessing the accuracy of self-consistent

approximation for these materials.

For linear polycrystals, it was found that the stand-

ard self-consistent method [1,2] gives accurate estimates

for the effective behavior, when compared with the FFT
simulations. As for the field fluctuations, the matching

between the SC estimates and the FFT simulations is

very good for moderate grain anisotropies, but starts

to deteriorate at higher contrasts.

For power-law viscous polycrystals, the use of the SC

approximation for the relevant �linear comparison poly-

crystal� in the context of the �second-order� homogeniza-

tion method [17,18] leads to the best overall agreement
with the FFT results for the effective behavior—at least

when compared with the �incremental�, �affine�, �tangent�
and �variational� extensions of the SC approximation,

especially for high grain anisotropies. Concerning the

overall field fluctuations, the �second-order� results exhi-
bit good qualitatively agreement with the full-field pre-

dictions, but the results of an earlier version of the

method (NF: without fluctuations) match better with
the above FFT results—especially those corresponding

to the strain-rate field fluctuations at large contrasts.

This unexpected result could be attributed, at least in

part, to numerical inaccuracies of the FFT results, in

turn due to the development at large grain anisotropies

of highly localized deformation fields that would require

more refined meshes, than those allowed by our compu-

tational resources. Further work will be required to elu-
cidate this point.

Concerning the effect of grain anisotropy, it was found

that the effective behavior of the polycrystals was sensi-

tive to the number of independent slip systems that are

active at the single-crystal level. Thus, for ice-type poly-

crystals, which exhibit easy slip only on the basal systems

(forming a set of two independent systems), the effective

flow stress was found to grow proportionally to the flow
stress of the hard prismatic and pyramidal systems. On

the other hand, for Zr-type polycrystals, which exhibit

easy slip on the basal and prismatic systems (forming a

set of four independent systems), the effective flow stress

was found to saturate, after some growth, with increasing

values of the hard pyramidal systems. Although, of

course, the effective behavior was found to be dependent

on the strain-rate sensitivity, the just-mentioned scaling
behavior for large grain anisotropy [37] was found to

be independent of the strain-rate sensitivity. Grain
anisotropy was also found to have an effect on both the

overall stress and strain-rate fluctuations, tending to in-

crease with increasing grain anisotropy, but then saturat-

ing for large enough anisotropy. This is consistent with

the physics of the problem requiring that certain compo-

nents of the stress and strain tensors be continuous across
grains with different orientations, which lead to the pres-

ence of highly nonuniform fields within the grains. In

addition to the overall fluctuations, estimates were also

generated for the per-phase averages and fluctuations

of the stress and strain-rate fields in the polycrystal. It

was found that the per-phase averages depend on the ori-

entation of the grain relative to the loading, with the

range of observed values increasing with increasing grain
anisotropy. However, an interesting behavior was ob-

served for the per-phase standard deviations of the von

Mises stress and equivalent strain fields of linear, iso-

tropic polycrystals: the self-consistent model suggests

that these quantities are independent of grain orientation

[31], and the FFT simulations appear to confirm that this

is not a bad approximation for random linear polycrys-

tals with isotropic textures. This result, however, does
not hold for nonlinear polycrystals. Finally, it is noted

that the findings of this paper are completely consistent

with the corresponding findings of Lebensohn et al. [13]

for a model two-dimensional polycrystal, for which exact

results are available in the linear case, as well as rigorous

bounds in the nonlinear case.
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[4] Kröner E. J Phys F 1978;8:2261.

[5] Hill R. J Mech Phys Solids 1965;13:89.

[6] Hutchinson JW. Proc R Soc Lond A 1976;348:101.

[7] Molinari A, Canova GR, Ahzi S. Acta Metall Mater

1987;35:2983.
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[18] Liu Y, Ponte Castañeda P. J Mech Phys Solids 2004;52:467.
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